
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 52:1175–1193
Published online 19 April 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1227

High-order stable interpolations for immersed
boundary methods

Nikolaus Peller1;∗;†, Anne Le Duc1, Fr�ed�eric Tremblay2 and Michael Manhart1

1Fachgebiet Hydromechanik; Technische Universit�at M�unchen; Arcisstr. 21, 80290 Munich; Germany
2Newmerical Technologies Int; 680 Sherbrooke Street West; Montreal; Canada H3A 2M7

SUMMARY

The analysis and improvement of an immersed boundary method (IBM) for simulating turbulent �ows
over complex geometries are presented. Direct forcing is employed. It consists in interpolating boundary
conditions from the solid body to the Cartesian mesh on which the computation is performed. Lagrange
and least squares high-order interpolations are considered. The direct forcing IBM is implemented
in an incompressible �nite volume Navier–Stokes solver for direct numerical simulations (DNS) and
large eddy simulations (LES) on staggered grids. An algorithm to identify the body and construct the
interpolation schemes for arbitrarily complex geometries consisting of triangular elements is presented.
A matrix stability analysis of both interpolation schemes demonstrates the superiority of least squares
interpolation over Lagrange interpolation in terms of stability. Preservation of time and space accuracy
of the original solver is proven with the laminar two-dimensional Taylor–Couette �ow. Finally, practi-
cability of the method for simulating complex �ows is demonstrated with the computation of the fully
turbulent three-dimensional �ow in an air-conditioning exhaust pipe. Copyright ? 2006 John Wiley &
Sons, Ltd.

KEY WORDS: immersed boundary (IB); Lagrange interpolation; least squares interpolation; large
eddy simulation (LES); complex �ow; matrix stability analysis

1. INTRODUCTION

With the development of memory and speed of computers, the computation of time-dependent
�ows around complex geometries has become a feasible task. A widely used method consists
in representing the geometry with body-�tted coordinates. The boundaries of the computa-
tional mesh then coincide with the body surface. But solvers for curvilinear or unstructured
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1176 N. PELLER ET AL.

meshes are less e�cient than Cartesian solvers in terms of computational time and memory
requirements [1]. Additionally, generating a body-�tted grid around an industrial geometry
can be very time-consuming. The immersed boundary method (IBM) allows to take into
account the e�ect of the body on a �ow while using a Cartesian solver. The easy meshing and
e�ciency of Cartesian solvers is retained. An extensive review of the di�erent IBMs along
with their strengths and limitations can be found in References [2, 3]. Here we restrict
ourselves to a brief review of force-�eld and direct-forcing modelling and focus on the pre-
cision and time-e�ciency of the method.
The idea of modelling a solid boundary with a force �eld dates back to Peskin [4]. He

computed two-dimensional biological �ows within elastically deformable bodies. The method
relies on a coupled time advancement of the equations for the position of the elastic wall and
for the �uid velocity. It is originally �rst-order accurate and has been refurbished by Lai and
Peskin [5] to be second-order accurate. The method is computationally cumbersome because
of the coupling between a Lagrangian approach (for the boundaries) and an Eulerian approach
(for the �uid).
Goldstein et al. [6] compute the �ow around rigid bodies. The physical force can then

be replaced with a source term in the momentum equation that brings the velocity at the
solid boundary to a pre�xed target value. Employing this feedback forcing within a Cartesian
spectral code, Goldstein et al. compute the two-dimensional �ow around an impulsively started
circular cylinder and the �ow in a plane and a ribbed channel. Saiki and Biringen [7] use the
same forcing to compute the �ow around a cylinder with a Reynolds number based on the
diameter up to 400. Using a high-order �nite di�erence solver instead of a spectral solver, and
spreading the forcing over a few grid points about the solid boundary, they are able to reduce
the spurious Gibbs oscillations appearing near the solid boundaries in Reference [6]. The
stabilization is attributed to the use of �nite di�erence schemes instead of spectral methods.
The method of Saiki and Biringen [7] is at most �rst order at the boundaries.
A major disadvantage of the feedback forcing is the presence of two case-dependent

constants in the forcing term. For �ows with high frequencies (typically turbulent �ows),
the constants must take on high values. But the equations become sti�er with increasing mag-
nitude of these parameters. Fadlun et al. [8] note that with feedback forcing, the CFL of
the computation may drop 4 orders of magnitude compared to the CFL set by requirements
within the core of the �ow. Using a partly implicit time integration of the forcing, Fadlun
et al. are able to raise the CFL, but it remains at least one order of magnitude smaller than
without forcing.
Mohd-Yusof [9] realizes a breakthrough with a discrete-time IBM. Discretizing the Navier–

Stokes equations temporally between time step n and n + 1, Mohd-Yusof computes a force
term such that the boundary condition at time n+ 1 is exactly enforced. This term is added
to the momentum equation. The forcing is called direct because no dynamical process is
involved: at each time step, the boundary condition holds regardless of the characteristic fre-
quencies of the �ow. The method is computationally time-e�cient because the time-step re-
quirement at the boundaries is the same as in the bulk of the �ow. For a laminar ribbed
channel, the results of Mohd-Yusof compare well with the ones obtained with a body-
�tted grid.
In the rest of the paper, we consider only the direct-forcing implementation of IBM.

It is practically equivalent with enforcing the boundary condition within the �ow. When
the boundary does not coincide with Cartesian grid points, an interpolation is needed. The

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1175–1193



HIGH-ORDER STABLE INTERPOLATIONS FOR IB METHODS 1177

accuracy of the IBM thus depends on the interpolation type, order and direction. We will now
focus on the interpolations.
We �rst discuss the problem of interpolation direction. Fadlun et al. [8] set the velocities

‘that, in a linear interpolation approximation, the Cartesian point closest to the boundary would
have if the boundary had the prescribed velocity’. With this second-order interpolation, the
authors successfully compare their simulation of the �ow around a sphere (with Reynolds
number from 100 to 5000) with simulations performed with a body-�tted grid (both under
assumption of axisymmetrical �ow). Verzicco et al. [1] simulate the turbulent �ow in a
piston–cylinder assembly using the same interpolation. Note that the interpolation is performed
along the direction where the distance between Cartesian control point and solid boundary is
minimal. This one-dimensionality thus introduces arbitrariness when the body surface is not
preferentially aligned with one direction of the grid. Kim et al. [10] remove it employing
bilinear interpolations in their computations of a 2D cylinder up to Reynolds number 100
and of a sphere up to Reynolds number 300. Balaras [11] uses linear interpolation normal
to the body surface. His results for a cylinder at Reynolds number 300 and for a wavy
channel agree well with computations performed with body �tted grids. Tremblay et al. [12]
employ weighting to extend one-dimensional Lagrange interpolations of higher order to three-
dimensional interpolations. They compute the turbulent �ow around a circular cylinder at
subcritical Reynolds numbers (DNS at Re=3900 [12] and LES at Re=140 000 [13]) and �nd
good agreement with experimental data. The problem of preferred direction of interpolation
is thus solved.
We now turn to the question of interpolation order. As noted by Fadlun et al. [8], linear

interpolations require strong clustering in wall vicinity. This is important in particular for
the proper representations of quantities known to be strongly non-linear [14]. The turbulent
viscosity �T for example must be reconstructed in cells near the wall, because the evaluation of
its test-�lter operations would require information from blocked cells. But linear reconstruction
of �T can lead to an overestimation of the turbulent viscosity in equilibrium �ows where
�T decreases with a y+3 slope near the wall [11]. For practical computations, higher-order
interpolations are thus needed. They do not necessarily increase the formal accuracy of the
solver (limited by the spatial accuracy in the bulk of the �ow), but can allow for more practical
point clustering in the vicinity of boundaries. As high-order interpolations are known to be
sensitive to numerical instability, a trade-o� between accuracy and stability must be found.
Majumbar et al. [15] and Tseng and Ferziger [16] employ bilinear and quadratic (i.e. third
order) boundary interpolation in a globally second-order Cartesian solver. Both use ad hoc
image points to alleviate instabilities. Kim et al. [10] also notice the problem in their bilinear
interpolation and introduce an ad hoc correction resembling a least squares interpolation.
When trying to compute �ows around practically relevant geometries using Lagrange high-
order interpolations, we were also faced with numerical instabilities. Employing least squares
interpolations, we derived stable high-order interpolations.
The goal of this paper is to demonstrate the robustness and accuracy of least squares

interpolations within the direct-forcing IBM. Section 2 describes the Cartesian solver and the
IBM implementation. Section 3 focuses on the di�erent interpolation schemes. In Section 4,
the interpolations are analysed with a matrix stability analysis. Numerical accuracy tests on
Taylor–Couette �ow are presented in Section 5. Section 6 is devoted to a practically relevant
application: the �ow exiting a car air-conditioning system is considered. Finally conclusions
and perspectives are drawn in Section 7.
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2. NUMERICAL METHODOLOGY

2.1. Basic numerical scheme

We solve the Navier–Stokes equations for incompressible �ows:

@ui
@xi

=0 (1)

@ui
@t
+ uj

@ui
@xj

=−1
�
@p
@xi

+ �
@2ui
@x2j

(2)

At solid boundaries, we apply Dirichlet boundary condition for the velocity and Neumann
boundary condition for the pressure.
The Navier–Stokes equations are integrated within the standard framework of �nite volumes

using staggered Cartesian grids [17, 18]. The spatial approximations are second-order accurate
and use centred interpolations and di�erentiations. Time integration is performed via a frac-
tional step method using a leapfrog scheme with time lagged di�usion [19] for the momentum
equation (2):

un+1 = un−1 + 2�t(D(un−1) + C(un) +G(pn+1)) (3)

where u is the velocity �eld, D are the di�usive terms, C the convective and G the pressure
terms. The pressure pn+1 is obtained by the Poisson equation:

div[G(�pn+1)]=− 1
2�t

div(ũn+1) (4)

where ũn+1 is an intermediate velocity �eld and �pn+1 = pn+1 − pn. The resulting system is
solved by Stone’s strongly implicit procedure (SIP). See e.g. Reference [20] for discussion
of these standard methods.
The solid boundaries are taken into account by the IBM which is the subject of the present

paper. Their treatment during the time step is explained in detail in the following section.

2.2. Setting the boundary conditions

Our immersed boundary technique relies on direct forcing [12]. It consists in transforming
the boundary condition known at the solid surfaces into internal boundary conditions at the
nodes of the Cartesian grid. These internal boundary conditions are set using interpolation
from the surrounding nodes. To maintain the order of the scheme and to avoid strong grid
clustering at the boundaries, higher order interpolations are used. Before investigating di�erent
interpolation schemes in Section 3, we describe the general procedure here.
For setting the internal boundaries, grid cells intersected by the immersed boundaries are

identi�ed and blocked out of the computation. The velocities in these cells are set as Dirichlet
boundary conditions determined by an interpolation algorithm from the neighbouring values
within the �ow �eld according to the following general stencil formulation:

�0 =
(
N∑
i=1
�i · �i

)
+ �r · �r (5)
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where N is the number of neighbours involved in the interpolation. The situation in Figure 1
corresponds to the standard choice of boundary condition in a staggered grid. � represents
one of the velocity components. �0 is the internal Dirichlet boundary condition, �i the values
at the neighbouring �uid points and �r the value at the physical boundary. The interpolation
coe�cients �i and �r solely depend on the geometry and are computed in a preprocessing
step. They depend on the interpolation technique and are described in the following section.
In the rest of this paragraph, we formally write boundary condition (5) as u0 = I(u).
We construct an iterative integration scheme to ful�l the following three conditions: (i)

and (ii) are Equations (3) and (4) for the non-blocked cells and velocities and (iii) is the
immersed boundary condition u0 = I(u) with desired interpolation accuracy order. This is
accomplished by the iterative modi�ed fractional step algorithm as given in Table I. We
obtain an intermediate velocity �eld ũ by using the pressure at the old time level pn. The
divergence of the velocity �eld is computed with boundary condition ũ0 = I(ũ) (Step 2) and
used as right-hand side of the Poisson equation (Step 3) for the pressure correction (Step 4).
Within the Poisson equation, a Neumann condition for �p̃ is applied. After several iterations of
Step 3 by a SIP solver, the velocity and pressure �elds are updated by Step 4. After updating
the boundary condition (Step 5), the divergence is checked. If it is below our desired threshold
�, the new velocity and pressure �elds un+1 = ũ and pn+1 = p̃ are obtained. Else, Steps 3–5
are repeated until convergence.

Blocked cell
at interface

part of 
triangle

φ
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φ
2 φ

3

x
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φ
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φ
0

Blocked cell

Fluid cell
X

X

x1 x2 x3x0
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interpolated boundary condition

Figure 1. Typical 1D stencil con�guration for interpolation in x direction. Blocked cells inside the body
and neighbouring �uid cells are shown.

Table I. Time step algorithm.

Step 1: ũ= un−1 + 2�t(D(un−1) + C(un) + G(pn))
Step 2: ũ0 = I(ũ); p̃=pn

while (div(ũ)¿�)

Step 3: div[G(�p̃)]= − 1
2�t

div(ũ)

Step 4: ũ= ũ+ 2�tG(�p̃); p̃= p̃+ �p̃
Step 5: ũ0 = I(ũ)

end
Step 6: un+1 = ũ; un+10 = ũ0; pn+1 = p̃
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2.3. Cartesian blocking algorithm

Our Cartesian mesh consists of control volumes for the pressure (pressure cells) and velocities
(velocity cells), respectively. Due to the staggered arrangement of the variables their bound-
aries do not coincide. A cell is called blocked when its corresponding variable (pressure or
velocity) is determined by interpolation (5). We block cells according to the criteria described
below.
The blocking strategy is pressure cell oriented. Starting from the cell centres, intersection

points of the coordinate lines with the body surface are searched. If intersection points are
found and lie within the boundaries of the pressure cell, this cell is blocked. Starting from
the pressure cell the blocking is extended to the velocity cells: each velocity cell touched by
the blocked pressure cell is also blocked.
Principally, the body surface can either be represented analytically or by an unstructured

mesh consisting of triangles. We prefer the latter, because it o�ers great �exibility in import-
ing arbitrary surfaces from an originally CAD-based description. One has to bear in mind,
however, that this approach leads to a second-order determination of intersection points and
consequently to a second-order representation of the whole geometry. Therefore the surface
mesh has to be �ne enough not to introduce unnecessary errors in the geometric representation
when considering �ows over analytically given geometries as e.g. cylinders.
As mentioned before, the primary criteria for blocking a pressure cell is based upon the

intersection of the body surface with the coordinate lines. In a second sweep, all remaining
pressure cells within the body are blocked by a �lling algorithm. A third sweep blocks all
remaining velocity cells which overlap with blocked pressure cells in order to achieve the
con�guration given in Figure 1.
The �lling algorithm starts at an arbitrary cell known to lie within the �uid domain. All cells

not belonging to the set of �uid-�lled cells are either blocked or marked as inactive. These
cells are excluded from certain steps in the algorithm as e.g. determining convergence criteria.

3. INTERPOLATION

The following section describes the determination of the interpolation coe�cients �i required
in Equation (5). The interpolations are derived by using 1D approximations. The generalization
to the three-dimensional situation is done by weighting coe�cients depending on intersection
distances as described in Section 3.3. Before that, two alternative interpolation strategies,
Lagrange and least squares interpolation, respectively, are discussed.
The situation in 1D is sketched in Figure 1. x0 is the position of the variable to be

interpolated. In the following, we set x0 = 0 for simplicity. xr is the intersection point of
the coordinate line with the wall. It can run in the interval [−0:5�x; 0:5�x], whereby �x
is the grid spacing. The value �r at xr is set to the velocity of the wall. x1; x2; x3 are the
positions of the neighbouring variables �1; �2; �3 which are known variables and used for
the interpolation formulas.

3.1. Lagrange interpolation

The Lagrange interpolation consists in �tting a polynomial through the known �uid points
and the wall. The coe�cients �i in Equation (5) are directly obtained for the 1D interpolation
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by the Lagrange formula:

�i=

(
N∏

j=1; j �=i

(x0 − xj)
(xi − xj)

)
x0 − xr
xi − xr (6)

�r =

(
N∏
j=1

(x0 − xj)
(xr − xj)

)
(7)

The degree of the polynomial is equal to the number N of �uid points used in addition to
the wall intersection point. A third-order polynomial e.g. requires three �uid points xi plus
the wall point xr . The accuracy of the interpolation is of order O(�xN+1), since the order of
accuracy is one order higher than the degree of the interpolation polynomial used.

3.2. Least squares interpolation

For the least squares interpolation, a polynomial is chosen so that the sum of the squares of
the distance from the polynomial to the values at the �uid points is minimal. In addition,
the polynomial is constricted to match the value �r at the wall directly. In the least squares
method the degree of the polynomial has to be smaller than (N ). In the following, we show
how the coe�cients in Equation (8) are derived for a polynomial of degree 2. The value of
the polynomial p(x) is determined by

p(x)= a0 + a1x + a2x2 (8)

The constraint for the wall value to match exactly �r reads:

p(xr)= a0 + a1xr + a2x2r =�r (9)

which leads to the following expression for the polynomial:

p(x)=�r + a1(x − xr) + a2(x2 − x2r ) (10)

We seek the minimum of the squares of the errors:

min[F(a1; a2)]=min
[
n∑
i=1
(p(xi)− �i)2

]
(11)

Di�erentiation with respect to a1 and a2 leads to two equations for them

a1 =
C2A2 − C1A4
A2A3 − A1A4

a2 =
C1A3 − C2A1
A2A3 − A1A4

(12)

A1 =
n∑
i=1
(xi − xr)2; A2 =

n∑
i=1
(x2i − x2r )(xi − xr)
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A3 =A2; A4 =
n∑
i=1
(x2i − x2r )2

C1 =
n∑
i=1
(�i − �r)(xi − xr); C2 =

n∑
i=1
(�i − �r)(x2i − x2r )

The sums Ai are only dependent on the geometry and remain constant. The sums C1 and C2
however are dependent on the values �i at the control points. After inserting the polynomial
coe�cients a1 and a2 into the polynomial expression and rearranging, we obtain an expression
for �0

�0 =p(x0)= �r�r + �1�1 + �2�2 + · · ·+ �n�n (13)

The coe�cients �r and �i are obtained as

�r =1+
(−A2V2 + A4V1)(x0 − xr) + (−A3V1 + A1V2)(x20 − x2r )

A2A3 − A1A4 (14)

�i =
A2(x2i − x2r )− A4(xi − xr)

A2A3 − A1A4 (x0 − xr) + A3(xi − xr)− A1(x2i − x2r )
A2A3 − A1A4 (x20 − x2r ) (15)

with

V1 =
n∑
i=1
(xi − xr); V2 =

n∑
i=1
(x2i − x2r ) (16)

All coe�cients �r and �i can be computed in a preprocessing step, because they are solely
dependent on the geometry.

3.3. From 1D to 3D interpolation

One-dimensional interpolations have been introduced in the preceding sections. In the general
case, the interpolation of the interface cell values will be possible in two or three dimensions
and depends on the slope of the geometry. Figure 2 shows a possible 2D situation.
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Figure 2. Two-dimensional stencil con�guration.
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The stencil in each direction is one-dimensional and the interpolation procedure (5) can
be applied. In order to account for the three dimensionality, a weighting of the individual
interpolation directions takes place. It must assure that the interpolated value equals the exact
value when the boundary condition �r reaches a grid position. This can be achieved in the
following way. The weighting factors �dir are de�ned by the equations:

�dir =
�dir∑3
k=1 �k

(17)

with

�dir =

∏3
k=1; k �=dir �k

�dir
(18)

The distance �k is the distance between the intersection point and the interface cell centre
in the corresponding direction. The sum of the �dir equals unity. This �nally leads to a sum
of interpolated values from all three directions.

�mean =
3∑

dir=1
�dir ∗ �dir (19)

4. STABILITY ANALYSIS

Stability is a crucial issue of the IBM. In order to gain insight into the stability properties
of the various interpolation types, we perform a stability analysis. As noted by Carpenter
et al. [21], the stability of a boundary scheme cannot be examined separately from the inner
scheme. We follow their analysis and investigate boundary schemes in combination with the
inner spatial approximation using matrix stability analysis.
Since the complete Navier–Stokes equations are too complex to be analysed analytically,

we consider the linear convection equation in order to model the hyperbolic part of the
Navier–Stokes equations:

@�
@t
= c

@�
@x

(20)

According to Gottlieb et al. [22], the stability of the scalar equation also yields the stability
of the system of equations. Therefore it is su�cient to analyse the scalar equation (20). The
convection speed c will be set to c=−1:0 in the following analysis.
For any explicit spatial scheme the semi-discretized equation is then

@�+

@t
=
c
�x

·M+�+ (21)

where �x is the (constant) grid spacing. The stability properties of the scheme are deter-
mined by the properties of matrix M+. When using a spatial second-order discretization
with upwind boundary stencil at left border and arti�cial boundary closure at right border
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[21, Equation (76)], the system matrix and solution vector read

M+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1:0 1:0

−0:5 0 0:5

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

−0:5 0 0:5

−0:5 0:5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; �+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

�0

�1
...

�N

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

The stability could be in�uenced by the choice of condition at the right boundary. We have
chosen the same arti�cial boundary condition as introduced by Carpenter et al. [21, Equation
(76)] because of two reasons: (i) In case of the one-dimensional convection equation there is
only one physical boundary condition. In order to assess su�cient conditions for the stability
of the scheme, the other boundary should not inhibit instabilities. (ii) Using an upwind stencil
at the right boundary is not a proper choice as it could be too dissipative. The stability analysis
would then be less sensitive to the left boundary closure under consideration.
At the left border, the IBM is applied: the immersed boundary stencil is used in order

to interpolate �0 with the information at the boundary location xr and at the next grid
points within the �uid domain. When setting �r =0 in Equation (3), this can be expressed as
follows:

�0 = �1 · �1 + �2 · �2 + �3 · �3 (23)

Here, we have restricted ourselves to three �uid control points. The coe�cients �1:::3 are set
according to Lagrange or least squares interpolation. With three control points, a polynomial
of maximum degree three can be described by Lagrange interpolation, giving rise to a fourth-
order interpolation. The least squares polynomial is restricted to degree two, which gives
an accuracy of third order. Also note that coe�cients �1:::3 depend on the location of the
actual boundary. Therefore the stability analysis must be carried out for several boundary
locations.
Substituting �0 in Equations (21) and (22) by Equation (23) imposes the left boundary

condition. Note that only (N ) points are strictly numerically motivated [21]. The physical
boundary condition is a prescribed value and will not be considered in the stability analysis.
Therefore the solution vector � is reduced by the element �0. Consequently, the matrix M+ is
also reduced by the �rst line and �rst column in order to remain consistent. In the following,
Equation (24) shall denote the reduced system

@�
@t
=
c
�x

·M�= M̂� (24)
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with

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[− 0:5 · �1] [0:5 · (1− �2)] [−0:5 · �3]
−0:5 0 0:5

. . . . . . . . .

. . . . . . . . .

−0:5 0 0:5

−0:5 0:5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

and

�=[�1 · · · �N ]T (26)

A similarity transformation can be applied to Equation (24) by using the eigenvalue matrix
(diagonal matrix S) and eigenvectors (P) of the matrix M̂ :

P−1M̂P=S; P−1�= �̃ (27)

which yields

@�̃
@t
= S�̃ (28)

The solution of the transformed equation �nally reads:

�̃(x; t)= e(St) · f̃(x) (29)

It shows exponential dependence [21] on the eigenvalues of the matrix M̂ , i.e. the temporal
stability of the numerical scheme is determined by the properties of the eigenvalues 	1:::N
in matrix S. Spatial discretizations yielding eigenvalues with a positive real part will ex-
hibit exponential divergence of the solution. In the following, we analyse the eigenvalues for
Lagrange and least squares boundary conditions.
We computed the eigenvalues for Lagrange interpolation of second to fourth order as well

as for least squares interpolation of third-order accuracy in connection with a standard second-
order scheme in the domain. The boundary location is varied from −0:5�x to +0:5�x with
the origin of the coordinate system at x0 (Figure 1). A value of |xr|=0:5�x corresponds to a
position in the middle of two cells. In Figure 3, the eigenvalues of all investigated schemes
are plotted for xr =0:0. It is clear that the eigenvalues of the various schemes have to fall
on one curve, since with xr =0:0, the interpolated value is set directly to the value of the
boundary condition (in our case zero). This situation is stable.
When moving the boundary position towards positive xr , we can investigate the stability

for extrapolation of �0. At xr =0:2�x (Figure 4, left), the real parts of the eigenvalues move
away from the imaginary axis and all eigenvalues are still within the left half plane (LHP).
This trend continues for xr =0:5�x (Figure 4, right), from which we can conclude that, for
extrapolation, all investigated schemes remain stable.
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Figure 4. Eigenvalues of matrix M for xr =0:2�x (left) and xr =0:5�x (right).

For interpolation of �0, however, the various schemes behave di�erently. At position
xr =−0:2�x (Figure 5, left), it can be seen that all schemes tend towards the imaginary
axis. The �rst boundary scheme with positive real eigenvalues is the fourth-order Lagrange
interpolation which is slightly unstable for this boundary position. The third-order Lagrange
interpolation as well as the linear (second-order) Lagrange interpolation and the least squares
interpolation still have all eigenvalues in the LHP and are consequently stable.
At the location xr =−0:5�x, however, (Figure 5, right) the fourth order as well as the third-

order Lagrange interpolations have eigenvalues with positive real part. This means instability
for Lagrange interpolations of order higher than two. The least squares interpolation of third
order still behaves well and only shows eigenvalues in the LHP.
We can conclude that with the least squares interpolation method, stable interpolation

schemes for immersed boundaries can be constructed at higher accuracy orders than with
Lagrange interpolation polynomials.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1175–1193



HIGH-ORDER STABLE INTERPOLATIONS FOR IB METHODS 1187

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005  0  0.005

im
ag

(λ
)

real(λ)

Lagrange 4th order
Lagrange 3rd order
Lagrange 2nd order
Least Squares 3rd order

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005  0  0.005

im
ag

(λ
)

real(λ)

Lagrange 4th order
Lagrange 3rd order
Lagrange 2nd order
Least Squares 3rd order

Figure 5. Eigenvalues of matrix M for xr =−0:2�x (left) and xr =−0:5�x (right).

5. ACCURACY INVESTIGATION

In what follows, we will investigate the e�ect of the boundary treatment on the numerical
accuracy. In order to do so, we consider the cylindrical Taylor–Couette �ow. We represent
the cylinders in a Cartesian mesh applying the IBM and compare to the analytical solution.
We investigate Lagrange interpolations of second and fourth order in comparison with the
least squares interpolation of third-order accuracy. Note that for Lagrange third and fourth
order, our simpli�ed stability analysis predicts unstable behaviour. This does not necessarily
mean that in actual cases, this instability is observed as already documented by Tremblay
et al. [12, 13].

5.1. Testcase set-up

The cylindrical Taylor–Couette �ow establishes between an inner and an outer cylinder,
rotating at (possibly di�erent) constant angular speed. A top view is shown in Figure 6. For
the numerical investigations, the outer cylinder is maintained at rest while the inner cylinder
rotates with unit angular speed. The outer cylinder radius is six times as big as the inner
cylinder. The Reynolds number built with angular speed of the inner cylinder and radius of
the inner cylinder is 30. Note that the simulation is strictly plane, which inhibits the appear-
ance of three-dimensional Taylor vortices. Thus the �ow is forced to remain laminar and an
analytical solution can be obtained.
In cylindrical coordinates, the �ow is one dimensional and fully described by its azimuthal

velocity u’ and pressure distribution p. Both variables solely depend on the radius r. u’
satis�es the no-slip boundary condition at inner and outer cylinders. The one-dimensional
analytical solution is written as (see e.g. Reference [23]):

u’(r)=
A
r
+ Br (30)

p(r)
�
=

−A2
2

1
r2
+ 2AB log r +

B2

2
r2 +D (31)
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Figure 6. Top view of the cylindrical Taylor–Couette �ow. For visibility only
one-quarter of the cylinder is shown.

Table II. Grid dimensions.

#1 #2 #3 #4

�x=r1 0.2 0.1 0.05 0.025
Total number of cells 6400 25 600 102 400 409 600
Number of cells per inner radius 5 10 20 40

with

A=
−U’(r1) · r1r22
(r21 − r22)

; B=
U’(r1) · r1
(r21 − r22)

(32)

The constant D in the equation for the pressure is chosen in such a way that the pressure
at the outer cylinder is zero p(r2)=0. Note that the analytical solution is independent of
Reynolds or Taylor number. We solve the �ow in a 2D Cartesian coordinate system spanning
the plane perpendicular to the axis.

5.2. Numerical solution

The two cylinders are immersed in a 2D Cartesian equidistant grid of size 16r1 × 16r1. For
all tested interpolation algorithms, four runs with di�erent grid spacings are investigated as
displayed in Table II.
Figure 7 shows the azimuthal velocity and pressure pro�les of the numerical simulation

plotted along with the analytical pro�le for the grid spacings, #1 and #2, as given in Table
II. Both use the least squares interpolation for the representation of the solid wall. Grid #1
is the coarsest grid used for the Couette-�ow simulations. Only minor deviations from the
analytical solution can be recognized. For the �ner grid #2, no deviations can be distinguished
anymore.
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Figure 7. Pro�les for least squares boundary condition for grid #1 and #2.
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5.3. Grid study

The numerical error is computed by subtracting the analytical solution from the numerical
solution at (x; y)= (0; 4r1) with the rotation axis of the cylinder at (x; y)= (0; 0). In Figure 8,
the error is plotted versus the grid spacing for all three interpolation algorithms in compar-
ison to the second-order slope expected for the solver in the core of the domain. All three
interpolation algorithms show similar convergence behaviour. The only di�erence is in the
absolute value of the error. The fourth-order Lagrange interpolation predicts the boundary
value a little bit more accurately than the third-order least squares interpolation which in turn
is a little more accurate than the second-order Lagrange interpolation. It turns out that the
higher stability of the least squares compared to the Lagrange interpolation is obtained without
loss of accuracy.
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6. APPLICATION TO LARGE-EDDY SIMULATION OF GEOMETRICALLY
COMPLEX FLOWS

The practical advantages of the IBM with respect to boundary-�tted methods, among others
easy meshing, increase with geometrical complexity. This paragraph provides a brief
illustration of using the IBM to compute the �ow in geometries of high practical relevance.
Lagrange and least squares interpolations are compared.
We consider a car air-conditioning jet exiting into the passenger compartment. The nozzle

is a standard industrial exhaust pipe provided by Audi A.G. It is �tted with two sets of
small rectangular blades meant to de�ect the �ow (Figure 9). We perform an LES of the
�ow using a constant coe�cient Smagorinsky model. In the present simulation, no near-wall
(Van-Driest like) damping of the subgrid viscosity is used, because the grid is too coarse to
resolve the bu�er regions. A suitable wall model would be desirable. However, for such a
complex �ow situation the available models based on the logarithmic law or on thin boundary
layer approximations are questionable. So, near wall errors are inevitable, but since the �ow
and separations are mainly driven by pressure gradients, we believe that the errors introduced
are tolerable.
A full analysis of the �ow can be found in Reference [24]. Here, we focus on computa-

tional aspects of the study and particularly on the immersed boundary treatment. We consider
results obtained on a grid totalizing 40 millions points, which corresponds to 12 points in the
channel space between two horizontal de�ection blades. Although the total number of grid
points is large, the interchannel resolution remains somewhat coarse. High-order stable IBM
interpolations are thus particularly desirable for such a computation.
Both Lagrange and least squares IBM interpolations have been tested. The �ow could be

successfully computed with least squares quadratic (third-order) IBM interpolation. On the
other hand, all non-trivial Lagrangian interpolations (order ¿2) proved unstable for this �ow.
With Lagrange interpolations, we were only able to compute the �ow in a long-term stable way
with �rst-order interpolation. This is a simple displacement of the boundary condition resulting
in a smeared stepwise body because of the staggered variable arrangement. The third-order

Figure 9. Front view (left) and side view (right) of the rectangular exhaust pipe. Two sets of rectangular
thin blades are �tted at high angle of attack within the pipe.
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Figure 10. Time-averaged streamwise velocity in a (x; z) plane close to the middle spanwise position
of the exhaust pipe. Thick black lines indicate the geometry of the nozzle, thin black lines are u = 0.

Left: smooth body (least squares third order). Right: stepwise body.

least squares interpolation however allows for a smooth, accurate and stable representation of
the wall.
Figure 10 shows time-averaged �ows obtained with the smooth body (left) and the stepwise

body (right). The black lines indicate the limits of recirculation zones. Both boundary treat-
ments lead to similar qualitative features in the time-averaged �ows. The �ow is dominated
by strong time-pulsating recirculation zones, particularly on the leeward side of blades. The jet
spreads in both cases with nearly the same opening angle (4:8◦ for the third-order IBM versus
4:6◦ for the stepwise body) while it is de�ected upwards. For the third-order interpolation,
the de�ection angle is 7:4◦, in good agreement with experimental �ow visualizations. For the
stepwise body the de�ection angle is smaller (6:6◦). This comes from the under-prediction
of the recirculation regions by the stepwise body representation. This result might be linked
with a remark of Tseng and Ferziger [16] who found that the �ow behind a Gaussian bump
did not converge to the proper solution if a stepwise representation of the body was used.
They attribute this e�ect to �ne-scale noise introduced by the arti�cial roughness of the steps.
We observe the same in our application where the stepwise representation leads to strong
spurious oscillations with a wave length equal to the grid spacing. On the other hand, the
third-order interpolation allows to get smooth unsteady vortical structures, convected with
local �ow velocity [24]. This feature illustrates the need for high-order boundary treatment
when computing the �ow around complex geometries with the IBM.

7. CONCLUSIONS

High-order IBM for simulating complex �ows have been presented. The boundary treatment
of the embedded geometry has been analysed for least squares and Lagrange interpolation
schemes. Special attention has been drawn towards the least squares interpolation. It provides
a high-order boundary treatment in combination with stable numerical properties.
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The advantage of the IBM lies within the arbitrariness of geometrical complexity. Though
being restricted to reasonable mesh resolution at the body surface, the mesh is completely
independent of the geometry. Cumbersome mesh generation as in body-�tted grids is circum-
vented. The IBM is thus a practical method to compute utterly complex geometries as can be
found in industrial applications.
The immersed boundary stencil formulation is created automatically in a preprocessing step

and limits the numerical e�ort and cost to a minimum. Nevertheless, when using the IBM,
its e�ciency is restricted by the number of cells which are blocked out of the computation.
Though these cells do not contribute to the numerical solution, the algorithm has to treat them
as if they were part of it. Therefore, the computational e�ciency is dependent on the number
of blocked cells. Depending on the grid resolution the laminar test case example of the Couette
�ow has a ratio of blocked cells to non-blocked cells between 30 and 60%. Nevertheless the
laminar Couette �ow could be computed on a normal PC. The grid for the turbulent exhaust
jet has approximately 40 Million nodes and the ratio of blocked nodes to non-blocked nodes
is approximately 30%. By this the computational time for one time step is 5 s on 4 nodes of
the Hitachi SR8000, LRZ Munich. The additional e�ort for the interpolation remains below
10% of the overall computing time. Together, this gives an overhead of approximately 40%,
due to the IBM for this particular case.
In addition to the applicability of e�cient numerical algorithms, investigations on the accu-

racy of the IBM have proven that the method preserves the accuracy of the numerical solver.
Both least squares and Lagrange interpolations follow the same convergence rate. On the other
hand, only least squares interpolation gives overall good results regarding the stability analy-
sis. Thus least squares interpolation should be preferred for the computation of geometrically
complex �ows.
On the example of the turbulent exhaust jet, the applicability of the high-order method

is demonstrated. In this case, none of the Lagrange interpolations, except the �rst order,
gave stable solutions. We therefore used the least squares interpolation. It has the advantage
to level out the strong near wall �uctuations occurring in this �ow when the grid resolu-
tion, especially close to the wall, is limited. The urge for higher order representation of the
geometry is documented by the fact that, with �rst-order interpolation, none of the �ne-scale
turbulent structures could be resolved and the solution was contaminated by unphysical oscil-
lations. Thus, the least squares method renders a useful improvement with respect to Lagrange
interpolation, because it extends the range of high-order boundary treatment considerably.
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